
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Adding Parallelism to HPC Applications
using Reveal

DOE Centers of Excellence Performance Portability Meeting

Heidi Poxon
Technical Lead

Programming Environment
Cray Inc.

April 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Legal Disclaimer

© Cray Inc. Proprietary

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights
is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other
third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA,
and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their
respective owners.

Copyright 2016 Cray Inc.

April 2016 2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

When to Move to a Hybrid Model

April 2016 © Cray Inc. Proprietary 3

● When code is network bound
●  Increased MPI collective and point-to-point wait times

● When MPI starts leveling off
●  Too much memory used, even if on-node shared communication

is available

●  As the number of MPI ranks increases, more off-node
communication can result, creating a network injection issue

● When contention of shared resources increases

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Approach to Adding Parallelism

April 2016 © Cray Inc. Proprietary 4

1.  Identify key high-level loops
●  Determine where to add additional levels of parallelism

2.  Perform parallel analysis and scoping

●  Split loop work among threads

3.  Add OpenMP layer of parallelism
●  Insert OpenMP directives

4.  Analyze performance for further optimization,
specifically vectorization of innermost loops
●  We want a performance-portable application at the end

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

subroutine sweepz
…
do j = 1, js
 do i = 1, isz
 radius = zxc(i+mypez*isz)
 theta = zyc(j+mypey*js)
 do m = 1, npez
 do k = 1, ks
 n = k + ks*(m-1) + 6
 r(n) = recv3(1,j,k,i,m)
 p(n) = recv3(2,j,k,i,m)
 u(n) = recv3(5,j,k,i,m)
 v(n) = recv3(3,j,k,i,m)
 w(n) = recv3(4,j,k,i,m)
 f(n) = recv3(6,j,k,i,m)
 enddo
 enddo
 …
 call ppmlr
 do k = 1, kmax
 n = k + 6
 xa (n) = zza(k)
 dx (n) = zdz(k)
 xa0(n) = zza(k)
 dx0(n) = zdz(k)
 e (n) = p(n)/(r(n)*gamm)+0.5 &
 *(u(n)**2+v(n)**2+w(n)**2)
 enddo
 call ppmlr
…
 enddo
enddo

subroutine sweepz
…
do j = 1, js
 do i = 1, isz
 radius = zxc(i+mypez*isz)
 theta = zyc(j+mypey*js)
 do m = 1, npez
 do k = 1, ks
 n = k + ks*(m-1) + 6
 r(n) = recv3(1,j,k,i,m)
 p(n) = recv3(2,j,k,i,m)
 u(n) = recv3(5,j,k,i,m)
 v(n) = recv3(3,j,k,i,m)
 w(n) = recv3(4,j,k,i,m)
 f(n) = recv3(6,j,k,i,m)
 enddo
 enddo
 …
 call ppmlr
 do k = 1, kmax
 n = k + 6
 xa (n) = zza(k)
 dx (n) = zdz(k)
 xa0(n) = zza(k)
 dx0(n) = zdz(k)
 e (n) = p(n)/(r(n)*gamm)+0.5 &
 *(u(n)**2+v(n)**2+w(n)**2)
 enddo
 call ppmlr
…
 enddo
enddo

The Problem – How Do I Parallelize This Loop?

April 2016 © Cray Inc. Proprietary

●  How do I know this is a good loop to parallelize?
●  What prevents me from parallelizing this loop?
●  Can I get help building a directive?

subroutine ppmlr

call boundary
call flatten
call paraset(nmin-4, nmax+5, para, dx, xa)

call parabola(nmin-4,nmax+4,para,p,dp,p6,pl,flat)
call parabola(nmin-4,nmax+4, para,r,dr,r6,rl,flat)
call parabola(nmin-4,nmax+4,para,u,du,u6,ul,flat)

call states(pl,ul,rl,p6,u6,r6,dp,du,dr,plft,ulft,&
 rlft,prgh,urgh,rrgh)
call riemann(nmin-3,nmax+4,gam,prgh,urgh,rrgh,&
 plft,ulft,rlft pmid umid)
call evolve(umid, pmid) ! contains more calls

call remap ! contains more calls

call volume(nmin,nmax,ngeom,radius,xa,dx,dvol)

call remap ! contains more calls

return
end

5

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Hybridization Step 1: Loop Work Estimates

Gather loop statistics using CCE and the Cray
performance tools to determine which loops have the
most work

● Helps identify high-level serial loops to parallelize

●  Based on runtime analysis, approximates how much work exists
within a loop

● Provides the following statistics
●  Min, max and average trip counts
●  Inclusive time spent in loops
●  Number of times a loop was executed

April 2016 © Cray Inc. Proprietary 6

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Example Loop Work Estimates

April 2016 © Cray Inc. Proprietary

Table 2: Loop Stats by Function (from -hprofile_generate)

 Loop | Loop | Loop | Loop | Loop |Function=/.LOOP[.]
 Incl | Hit | Trips | Trips | Trips | PE=HIDE
 Time | | Avg | Min | Max |
 Total | | | | |
|--
| 8.995914 | 100 | 25 | 0 | 25 |sweepy_.LOOP.1.li.33
| 8.995604 | 2500 | 25 | 0 | 25 |sweepy_.LOOP.2.li.34
| 8.894750 | 50 | 25 | 0 | 25 |sweepz_.LOOP.05.li.49
| 8.894637 | 1250 | 25 | 0 | 25 |sweepz_.LOOP.06.li.50
| 4.420629 | 50 | 25 | 0 | 25 |sweepx2_.LOOP.1.li.29
| 4.420536 | 1250 | 25 | 0 | 25 |sweepx2_.LOOP.2.li.30
| 4.387534 | 50 | 25 | 0 | 25 |sweepx1_.LOOP.1.li.29
| 4.387457 | 1250 | 25 | 0 | 25 |sweepx1_.LOOP.2.li.30
| 2.523214 | 187500 | 107 | 0 | 107 |riemann_.LOOP.2.li.63
| 1.541299 | 20062500 | 12 | 0 | 12 |riemann_.LOOP.3.li.64
| 0.863656 | 1687500 | 104 | 0 | 108 |parabola_.LOOP.6.li.67

7

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

View Source and Optimization Information

April 2016 © Cray Inc. Proprietary 8

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Hybridization Step 2: Scope Selected Loop(s)

April 2016 © Cray Inc. Proprietary 9

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Review Scoping Results

April 2016 © Cray Inc. Proprietary 10

Parallelization
inhibitor messages

are provided to
assist user with

analysis

Loops with scoping
information are

flagged. Red needs
user assistance

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Review Scoping Results (2)

‘I’ identifies variables

that reside in functions
within the loop

April 2016 © Cray Inc. Proprietary 11

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Review Scoping Results (3)

Reveal identifies
shared reductions

down the call chain

Reveal identifies
calls that prevent

parallelization

April 2016 © Cray Inc. Proprietary 12

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Hybridization Step 3: Generate OpenMP Directives

April 2016 © Cray Inc. Proprietary

! Directive inserted by Cray Reveal. May be incomplete.
!$OMP parallel do default(none) &
!$OMP& unresolved (dvol,dx,dx0,e,f,flat,p,para,q,r,radius,svel,u,v,w, &
!$OMP& xa,xa0) &
!$OMP& private (i,j,k,m,n,$$_n,delp2,delp1,shock,temp2,old_flat, &
!$OMP& onemfl,hdt,sinxf0,gamfac1,gamfac2,dtheta,deltx,fractn, &
!$OMP& ekin) &
!$OMP& shared (gamm,isy,js,ks,mypey,ndim,ngeomy,nlefty,npey,nrighty, &
!$OMP& recv1,send2,zdy,zxc,zya)
do k = 1, ks
 do i = 1, isy
 radius = zxc(i+mypey*isy)

 ! Put state variables into 1D arrays, padding with 6 ghost zones
 do m = 1, npey
 do j = 1, js
 n = j + js*(m-1) + 6
 r(n) = recv1(1,k,j,i,m)
 p(n) = recv1(2,k,j,i,m)
 u(n) = recv1(4,k,j,i,m)
 v(n) = recv1(5,k,j,i,m)
 w(n) = recv1(3,k,j,i,m)
 f(n) = recv1(6,k,j,i,m)
 enddo
 enddo

 do j = 1, jmax
 n = j + 6

Reveal generates
OpenMP directive with
illegal clause marking
variables that need

addressing

13

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Hybridization Step 4: Performance Analysis

April 2016 © Cray Inc. Proprietary 14

Choose “Compiler
Messages” view to
access message

filtering, then select
desired type of

message

Choose “Compiler
Messages” view to
access message

filtering, then select
desired type of

message

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Summary

April 2016 © Cray Inc. Proprietary 15

● Reveal can be used to simplify the task of adding
OpenMP to MPI programs

●  The result is performance portable code
●  Programs can be built with any compiler that supports OpenMP

● Can be used as a stepping stone for codes targeted for
nodes with higher core counts and as the first step in
adding directives to applications to target GPUs

